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A three dimensional (3D) object is composed of curves and surfaces. One must
find a way to represent these to be able to model accurately an object. The two most
common methods to represent a curve or a surface are the implicit and the parametric
method.

The implicit method is a function which depends on the axis variables and is usually
equal to 0. It describes a relationship between the axis variables. For example, the
functionf(x, y) = x2 + y2 − 1 = 0 represents a circle of radius 1.

In the parametric method each of the axis variables is a function of an independent
parameter. In this form, a curve would be defined with the independent variableu as

C(u) = [x(u), y(u)] a ≤ u ≤ b

To represent the first quadrant of a circle in a parametric form, one can write

C(u) = [cos(u), sin(u)] 0 ≤ u ≤ π
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or he can also write

C(u) =
[

1− t2

1 + t2
,

2t
1 + t2

]
0 ≤ t ≤ 1

This shows that the parametric representation of a curve is not unique.
To visualize how a parametric curve is drawn, imagine that as time increases a new

point on the curve is plotted. In the function above, the time is represented with the
variablet, it goes from 0 to 1 and it generates a curve like the one in figure 1.

A class of parametric curves and surface is theNon-Uniform RationalB-Spline
(NURBS) curve or surface. NURBS are being used for computational reasons such
as being easily processed by a computer, being stable to floating points errors and
having little memory requirements and for the ability to represent any kind of curves
or surface. They are the generalization of non-rational B-splines which are based on
rational Bézier curves. Finally, the rational Bézier curve is a generalization of the
Bézier curve which is studied first.

A Bézier curve of degreen is defined by

C(u) =
n∑
i=0

Bi,n(u)Pi 0 ≤ u ≤ 1 (1)
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Figure 1: A quadrant of a circle generated withC(u) =
[

1−t2
1+t2 ,

2t
1+t2

]
for 0 ≤ t ≤ 1

The geometric coefficientsPi are calledcontrol points. The basis functionsBi,n are
the classicalnth-degree Bernstein polynomials [1] given by

Bi,n(u) =
n!

i!(n− i)!
ui(1− u)n−i (2)

For interactive shape design, the control points of the Bézier curve convey a lot of
geometric information as it can be seen with figure 2.

Figure 2: A Bézier curve of degree 3.

The Bézier curves can not represent conic curves. A conic curve (such as a cir-
cle) can be represented using arational functionwhich is defined as the ratio of two
polynomials such as

x(u) =
X(u)
W (u)

y(u) =
Y (u)
W (u)

z(u) =
Z(u)
W (u)

(3)

From this observation, the rational Bézier curve is defined as

C(u) =
∑n
i=0Bi,n(u)wiPi∑n
i=0Bi,n(u)wi

0 ≤ u ≤ 1 (4)
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ThePi andBi,n are defined as before, thewi are scalars called theweights. When the
weights are varied, acontrol pointwill “attract” or “repulse” the curve more. This is
best explained with an example. Four Bézier curves are drawn in figure 3. The only
difference between them, is the weight of the control pointP2. The weight of 0.5 makes
the curve go outside the boundary drawn by its control points. With the weight equal
to 1, the curve is equivalent to the one depicted in figure 2. The weight of 2 tends to
push the curve away from the second point and the weight of 10 pushes it even farther.

Figure 3: The effects of changing the weight of the second control point withw =
0.5, 1, 2 and10.

A curve consisting of only one rational Bézier curve segment is often inadequate.
The problems with a single segment range from the need of a high degree curve to
accurately fit a complex shape, which is inefficient to process and is numerically unsta-
ble, to the need of interactive design for which a single segment has limitations as far
as local control of the shape is concerned. To overcome these problems, a piecewise
rational curve is used.

A piecewise Bézier curve or a B-spline curve is constructed from several Bézier
curves joined together at somebreakpointswith some level of continuity between them.
Such a curve is depicted in figure 4.
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Figure 4: A piecewise rational Bézier curve.

The curveC(u) is defined onu ∈ [0, 1] and it is composed of the segments
Ci(u), 1 ≤ i ≤ m. The segments are joined together at the breakpointsu0 = 0 <
u1 < u2 < u3 < u4 = 1 with some level of continuity. The curve is said to beCk

continuous at a breakpointui if C(j)
i (ui) = C

(j)
i+1(ui) for all 0 ≤ j ≤ k whereC(j)

i

represents thejth derivative ofCi.
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Figure 5: The Bézier segments composing the curve.

The different control points composing the B-spline curve are shown in figure 5.
The control points circled with another circle are control points which are used by more
than one Bézier segment. It should be clear that storing these points more than once is
not memory efficient. If the curve is said to beC1 continuous, then some of the points
inside a Bézier segment are dependent on the position of the previous points to satisfy
the continuity constraint. Therefore storing these points in memory is not necessary.

The equation of the B-spline should therefore be memory efficient and should also
allows for the local control of the curve;i.e. the basis functions should not be defined
over [u0, um], instead, they should be constrained to a limited number of subintervals.
It is defined as

C(u) =
n∑
i=0

Ni,pPi a ≤ u ≤ b (5)

wherePi are the control points andNi,p are thepth degree B-spline basis functions.
There are different methods to define the B-spline basis functions: divided differ-

ences of truncated power functions [3], blossoming [6] and recurrence formula [2, 4, 5].
The recurrence definition is used since it is well suited to a computer implementation.

The B-spline has breakpoints which are namedknotsas seen in figure 4. A se-
quence of these knots is named theknot vectorand it is defined asU = u0, . . . , um
which is a nondecreasing sequences of real numbers,i.e., ui ≤ ui+1 for i = 0, . . . ,m.
The B-spline basis function ofp-degree is defined using the recurrence formula as

Ni,0(u) =
{

1 if ui ≤ u < ui+1

0 otherwise

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (6)

The above equation can result in a0
/0 quotient; that quotient is defined to be zero.

The knot vector of a B-spline curve is a non-periodic and non-uniform knot vector of
the form

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , um−p+1, b, . . . , b︸ ︷︷ ︸
p+1

} (7)

The B-spline curve of figure 4 is presented with itscontrol polygonin figure 6. The
control polygon is the polygon formed by joining the control pointsPi.
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Figure 6: A B-spline curve with its control polygon.

As mentioned above, only rational functions can represent a conic curves there-
fore one could generalize the B-spline curve to obtain a rational representation. This
generalization is named Non Uniform Rational B-Spline (NURBS) and it is defined as

C(u) =
∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

a ≤ u ≤ b (8)

wherePi are the control points,wi are the weights andNi,p are the B-spline basis func-
tions defined on the non-periodic and non-uniform knot vector defined in equation 7.

Rational curves with coordinate functions in the form expressed in equation 3
have efficient processing and have an elegant geometric interpretation. The use of
homogeneous coordinates can represent a rational curve inn dimensions as a poly-
nomial curve ofn + 1 dimensions. The homogeneous control points are written as
Pwi = wixi, wiyi, wizi, wi in a four dimensional space wherew 6= 0. To obtainPi,
we divide all the coordinates by the fourth coordinatewi. This operation corresponds
to a perspective map with the center at the origin. With these coordinates, the NURBS
curve can be redefined as

Cw(u) =
n∑
i=0

Ni,p(u)Pwi (9)

NURBS are also used to represent surfaces. A NURBS surface in homogeneous
coordinates is defined as

Sw(u, v) =
n∑
i=0

m∑
j=0

Ni,p(u)Nj,q(v)Pwi,j (10)

wherePwi,j forms a bidirectional control net, andNi,p(u) andNj,q(v) are the non-
rational B-spline basis functions defined on the knot vectors

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , ur−p+1, b, . . . , b︸ ︷︷ ︸
p+1

}

V = {c, . . . , c︸ ︷︷ ︸
q+1

, uq+1, . . . , us−q+1, d, . . . , d︸ ︷︷ ︸
q+1

}

wherer = n+ p+ 1, s = m+ q + 1 and the limits[a, b] and[c, d] are usually always
set to[0, 1].
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